
How to write a new Mobyle program interface

Mobyle 0.96

Contents

1 Overview 1

2 Writing 1
2.1 head . 2

2.1.1 Entities and XInclude . 2
2.2 Parameters . 2
2.3 Paragraph . 2
2.4 Parameter . 3
2.5 Typing . 4

2.5.1 Mobyle DataTypes Tour. 4
2.5.2 xml data types . 6
2.5.3 chaining . 6
2.5.4 extending mobyle types . 6

2.6 the Output . 6
2.7 Parameter display customization . 6

3 Installing and debugging 7
3.1 Validation . 7
3.2 Installation, Programs vs Local/Programs . 7
3.3 Debug . 7

1 Overview

We use xml in different parts of Mobyle: to describe programs, to save informations about user
workspaces - jobs and data (what we call session) -, and to store jobs execution informations. The
grammar of these xml is described in relax-ng format. The schema is stored in the mobyle.rnc and
mobyle.rng files, located at the root of the project. The session and jobs xml files are generated
automatically by Mobyle thus you won’t have to modify them. On the other hand, the xml files de-
scribing the programs are human made and are a central piece to integrate new programs in Mobyle.
In this document I will give some keys to build the xml of programs and understanding the “Mobyle
philosophy”. Even if you do not intend to use the xml distributed by Institut Pasteur, I recommend
you download them. I will illustrate some tricky points from these files.

2 Writing

A program is divided in two parts: the head which describes some generalities about the programs,
and the parameters which describe the different options of the program, how to build the command
line and so on.
In the rest of this document I will not describe each schema element but I will focus on the most
important ones.

1

2.1 head

• name is the name of the interface you describe. It does not have to be identical to the name
of the actual program you call, but if you can we recommend it. However, it is mandatory that
the value of this field is identical to the name of the xml file (minus its extension). e.g.: for the
file blast2.xml, the name tag is the following: <name>blast2</name>.

• version is the version of the program you interface, not the version of the xml description itself.

• doc

– reference can be either text, xhtml or an uri which point to a doi.

– authors can be either text or xhtml.

– doclink any URI pointing to documentation useful to this program. If a doclink is specified,
a button “Help Pages” will appear on top of the web form. If there is one docklink element
the documentation will be available either directly by clicking on “Help Pages” button, or
at the bottom of the web form as link. But if there is several docklink elements the button
send the user to the bottom of the interface where the user can choose between them.

• The category element must be chosen carefully, because the program tree in the left panel is
based on it. Each node of the classification is separated by a colon. If several categories are
specified, the program will appear in each branch of the tree. If no category is specified, the
programs appears in the left panel at the top level.

• The element env allow you to customize the xml for your platform. It permits to specify an
environment variable. Because this part is highly site-dependent, it is usually implemented with
entities. e.g:
you can specify the location of your blast datatbases with this mechanism.
<env name=‘‘BLASTDB’’>/usr/local/ncbi/db</env>
or path if the binary is not in usual path
<env name=‘‘PATH’’>/path/to/my/binary</env>

2.1.1 Entities and XInclude

It is possible to include site-dependent information (such as the above-mentionned env tag) by includ-
ing external entities. The external entities have to be declared in the Document Type Declaration
header of the xml file. External entities can also be used to factorize some parts of a set of descriptions.
If you have for instance a set of interfaces which wrap different programs from the same package, you
can include common package information in an entity that you include in the different xml files.

XInclude elements can also be used instead, as they provide an error-handling mechanism entities
do not have. All you need to do is to make sure the XInclude elements are correctly formatted and
the XInclude namespace is declared somewhere.

2.2 Parameters

The parameters element can be located as a direct child of either the program tag, or of the paragraph
tag. In the first case it includes all of the defined parameters for the program, whereas in the latter
case it defines the parameters of a given paragraph. It can include itself parameters or paragraph
elements.

2.3 Paragraph

The Paragraph has a double meaning: it can group the evaluation of different parameters, with respect
to a set of preconditions for instance, and it also groups visually these parameters in the interface.
Thus, a paragraph is both a set of parameter visually in the submission form and mean to share some
attributes like:

2

• argpos that specify the position of the argument on the command line (by convention the
command argpos is 0). If argpos is not specified at the parameter level, it take the argpos of
the immediately upper level (paragraph), and so on (if the parameter order doesn’t matter, it’s
not mandatory to specify one). This mechanism allows to set easily the relative position in the
command line for a set of parameter.

• the precond element allow to specify in which condition the parameter is evaluated. All pre-
conditions are evaluated beginning by the condition nearest the root to the condition of the
parameter. This mechanism allow to factorize precondition code.

• layout the layout parameter is a structure that allows to override the default display of the
parameters belonging to a paragraph. The default disposition of the parameters is a vertical
succession, where parameters in the form and job results in the job are layed out in the same
order as in the program description. This can be overriden using the layout tag, which allows
to define horizontal groups (with the hbox tag) and vertical groups (vbox tag) in a recursive
structure, which links to each parameter using its name. INCLUDE AN EXAMPLE?

2.4 Parameter

This the element which allow us to describe the options, the inputs and outputs of a program. The
information to build the command line is stored in this element. It’s an essential piece of the program
description.
The “parameter” element can have some attributes.

• ismandatory means that the parameter must be specified by the user. This kind of parameter
is indicated by a red star next to their prompt in the interface. There is a special case, when the
parameter is mandatory but a precond is also defined (see below). In this case the parameter
becomes mandatory only if the result of the precondition is true (these parameters are not
indicated by a red star).

• isout means the parameter is produced by the program. It is used to retrieve the results.
Mobyle always generates 2 files ([program name].out and [program name].err), corresponding to
the standard output and error streams. This two implicit results are automatically shown to the
user in the results page (if they are not empty) and are typed as Text. Some times we want to
change the description of the standard output. To do this, we define a parameter element with
the desired type and we declare that this parameter corresponds to the standard output with
the attribute isstdout. For an example see parameter golden out in golden.xml.

• The input parameters are shown to the user in the submission form, the output parameters in
the results form (if a result corresponding to this parameter is really produced). Sometimes it’s
necessary to add a parameter to control others but we don’t want it appear on the interface. To
do that we set the attribute ishidden to true (the value of hidden parameter can’t be set by
the user). For example see parameter rateAll in seqgen.xml.

Each parameter must have a name. The name must be unique among all parameters and para-
graphs. This name must be a valid python variable name (it cannot begin by a number . . .). The
name is used mainly inside Mobyle to refer to this parameter but the user does not see it on the
interface. He sees the prompt which is a human-readable label for the parameter. Some parameters
depend on other parameters. For example the parameter “A” has meaning only if parameter B is
set. To specify this kind of constraints we can use the precond element. The parameter which has a
precond will be evaluated only if this last is true.
The code contained in the format element is evaluated to gradually generate the command line. Mobyle
use python code but playMoby (http://lipm-bioinfo.toulouse.inra.fr/biomoby/playmoby/) uses
perl code. By default the value resulting of the code evaluation is printed on the command line. But
sometimes we need to write it in a file. We do that with the element paramfile. We used this
mechanism to simulate the interactive behavior of some programs such as Phylip suite (see pars.xml
, protdist.xml, fitch.xml, . . .). We may need to control finely the values provided by the users. The

3

http://lipm-bioinfo.toulouse.inra.fr/biomoby/playmoby/

values must be less than a maximum value, be odd We can specify this with the ctrl element
which contains evaluated code and a message which will display to the user if the code is evaluated
to False (see parameter identity in cons.xml).

We discussed mainly about the input parameters but an important step is to defined how to retrieve
the results produced by a programs. We use parameters with isout/isstdout attribute and the element
filenames. In this element we define unix masks which are used to map filenames with this parameter.
Thus one parameter can map easily several files. For example, the toppred program can take a file
with several fasta protein sequences. In this case, toppred will produce one file of hydrophobicity
per sequence in the input file. the name of these file will be the name of sequence with ’.hydro’
extension. To retrieve these files the unix mask is : “*.hydro” (eg. parameter hydrophobicity files in
toppred.xml). The unix mask is defined in a code element thus the code is evaluated before to use as
unix mask. We use it to generate a mask which cannot be known statically (e.g. parameter .treefile
in bionj.xml). Only 1 mask can be defined per code element. But paramfile can contains several
code elements(parameter in .xml). At last 2 elements which are not essentials to the command line
building but which are very helpful for the users. comment and example allow to generate in line
help and example data for the parameter or paragraph. When documentation is available, a clickable
red question mark appear beside the prompt.

2.5 Typing

Choosing the right type for a parameter is an essential point in program description authoring, as a
lot of features are based on types. The Typing influences: the interface display, the controls on user
values (for the input parameters), the chaining possibilities between programs and data reusability.
In Mobyle, typing is “multidimentional” as it’s based on several fields:

• the biotype describe the biological object (Nucleic , Protein , Drug ,. . .). biotype is not
mandatory as some parameters do not represent biological objects. The biotype values are free
text labels, but to chain the data appropriately, we must agree on the used labels (specially on
the spelling and case).

• type describes the computing object.

• acceptedFormat specifies the data format accepted by the program, hence the format in which
Mobyle must convert (if possible) an input parameter value. For sequence it could be FASTA,
EMBL . . . any format manage by Mobyle. Several acceptedFormat elements could be specify.

• card represents the cardinality, i.e. the number of distinct values that can be set for the
parameter.

The Mobyle data types are based on python classes (in Src/Mobyle/Classes). This system offers
some powerful features as inheritance . . . but has some limitations. Indeed, we have based the chaining
between two parameters on the type, we should write a python class for each type of data to avoid
irrelevant chaining. In the bioinformatics field the number of datatypes is too large to manage such
a list. This is the reason why we provide a mechanism to define a new datatype “on the fly”. We
call it “xml typing”. The element class does not refer to a mobyle python class but the new datatype
we need, and we add an element superclass which refer to a Mobyle python datatype class. This
mean that it is considered as a subtype, for features such as programs chaining (appearing as a new
datatype), but it is handled like the Mobyle python class for conversion and validation steps. For
consistency reasons, same “xml data type” in different parameters cannot be defined as refering to
different Mobyle python classes.

2.5.1 Mobyle DataTypes Tour.

Boolean Represents boolean values. Special case of None value: for all other types a None value
mean: undefined. But for boolean it means False.

Integer Represents integer values.

4

Float Represents float values.

String Represents string values. Since these strings will be on the command line, for security reasons
some values are unavailable. The value must be composed of words , spaces, quotes , minus , plus,
dots (if not followed by another dot) and eventually surrounded by commas.

This restriction could be problematic for some programs eg: fuzznuc,fuzzpro, fuzztran,. . . : these
softwares, from the EMBOSS suite, allow to search patterns in sequences using a grammar with
following forbidden characters: [] * ,. . . . If the parameter to specify the pattern is typed as string lot
of patterns could not be used. One possibility, when available, is to specify this kind of value in a file.
The specials characters will not appear on the command line and are thus allowed in Text parameter.

Choice It appears (by default) in the interface as radio button if there is less than 3 choices and
as a select box if there is more than 3 choices. It allows the user to choose a value among a range of
predefined values. The value is treated as a literal and of course to validate the user value must be in
the range of predefined values.

MultipleChoice It is similar to the Choice DataType, but always represented as a select box where
several values can be selected at once. The selected values appear on the command line separated by
the value of element separator.

AbstractText This type has been created to avoid unwanted inheritances. It should only appear
as the superclass of an actual type.

Text This type is displayed as a “data box” in the job submission form. It handles text files. The
data provided by the user will write on disk (in the session space). Before to write the data, its
contents is cleaned up (the windows end of line \n\r are replaced by unix \n), we rename the file,
and some characters (# ” ’< > & * ; $ ‘ | () [] { } ?) are substituted for security reasons. It is
very important to realize that Text is not a very expressive type, and if an input parameter is typed
as Text a lot of outputs will be potentially chained to this parameter. If possible, please use another
more specific type (see typing paragraph).

Binary This type is identical to the “Text” type, but handles binary data. Of course the data
contents is not “cleaned”.

Filename This one is used to specify a file name. some programs offer the possibility to specify the
name of the results file with an option. For security reasons, the user values # ” ’ < > & * ; $ ‘ | ()
[] { } ? are not allowed.

Sequence The Sequence input parameters appear as “data boxes”. The Sequences are analyzed
by the tool from the SEQCONVERTER variable defined in Config.py. We recommend to use squizz
instead of readseq as it may cause many troubles in sequence detection and conversion. The supported
formats are those supported by squizz and/or readseq. Usually the parameter of Sequence datatype
defined also elements acceptedDataFormats. Mobyle will try to convert the sequence in the first
acceptedDataformated found. if it’s not possible try the second and so on.

Alignment Handled identically to the Sequence type; but represents an Alignment, and has its own
formats.

Tree This class represents a phylogenetic tree. It does not implement any specific processing for
now.

5

2.5.2 xml data types

As We explained before this mechanism allow to defined easily a new data type in Mobyle. But the
new data type must be chosen carefully because the chaining is based on it. We provide a script
(Tools/mobtypes) which analysed xml and generate a report. the report is made of 3 sections

• the mobyle DataType based on python class.

• the data types defined by xml.

• the biotypes used.

By default this script analyse all installed xml programs definitions. It’s help the Mobyle administrator
to keep coherent a set of types for the portal. This kind of repository is programs specific, so we
distribute it with the xml programs (ftp://ftp.pasteur.fr/pub/gensoft/projects/mobyle/).

2.5.3 chaining

The mobyle system provides a suggestion mechanisms that allows users to use data in a defined set
of programs, wether by proposing in the program form user workspace data that are compatible with
the parameter, or by letting users interactively chain the result of a job to another program form. The
selection of the programs and input parameters which can accept a result (or any bookmarked data)
is based on type compatibility: the datatype of the target input has to have the same datatype as the
source or a superclass of it. Besides, if biotypes have been defined in the output and input, one of the
source biotypes has to be included in the target biotypes.

2.5.4 extending mobyle types

You can extend the Mobyle python data type by coding new classes. Your new classes must in-
herit from DataType or another class which inherits from DataType and must implement at least
2 public methods “convert” and “validate” following the same api defined in DataTypeTemplate
(in Core.py). To avoid to be erased during a further update, your new modules must be located
in Local/CustomClasses, and your new classes must be added in the init .py (see PhylipTree
example in Example/Local/CustomClasses). These new datatypes can then be used as those in
Src/Mobyle/Classes in your xml.

2.6 the Output

Mobyle can handle results only if they are in form of files. Once a job is finished, the different output
parameters are evaluated by using the filename masks on the job directory to store the corresponding
filenames. The mapping between the output parameters (with attribute isout/isstdout=“1”) allows
to organize the results for the user and type it which this essential for the chaining and the data
reusability.

2.7 Parameter display customization

The display of a parameter is by default deducted from a number of characteristics, as we stated
before: type, value range, etc. This default display can be overriden to specify custom HTML code
which will be used to layout parameters, either inputs or outputs. This is done using the interface
tag. It contains HTML code, but it’s use is rather tricky because it should conform some rules
that the Mobyle portal respects (CSS class names, javascript libraries which cannot be dynamically
loaded. When using this mechanism to customize the layout of an output parameter, you will use
the $resultfile string to tell the system where the name of the result file should be placed. The
example below is taken from the webmol visualizer from the RPBS lab (http://mobyle.rpbs.univ-
paris-diderot.fr/programs/webmol example.xml). It specifies how to display a PDB-formatted result
structure in a visualization applet and in a text frame.

6

ftp://ftp.pasteur.fr/pub/gensoft/projects/mobyle/

<interface>
<table width="100\%" xmlns="http://www.w3.org/1999/xhtml">
<tr>
<td width="50\%">
<applet code="proteinViewer.class" codebase="/applets/webmol/" width="100\%"

height="450px">
<param name="PROTEIN" value="\$resultfile" />
<PARAM NAME="PATH" VALUE="./" />
<PARAM NAME="PDB_STRING" VALUE="" />
<PARAM NAME="URL" VALUE="" />
<PARAM NAME="EXT" VALUE="" />

</applet>
</td>
<td width="50\%">
<object type="text/plain" data="\$resultfile" height="250px">
</object>

</td>
</tr>
</table>

</interface>

3 Installing and debugging

3.1 Validation

When creating or modifying a program description, validating the XML code is highly recommended
as it can detect problems which can cause sometimes obscure problem during the use of the description,
at display or job execution time for instance. To do so, use the mobvalid script which is located in
the Tools subfolder of the Mobyle directory1. As the typing system is central to the process chaining,
the consistency between the types is crucial. All “xml’data type’ types must refer to the same python
class, some typographical mistakes in this xml class or biotypes could prevent or lead to unexpected
chaining. So we provide a tool: “mobtypes” which scan all types and make a kind of repository of all
types used in your portal. This tool helps the Mobyle administrators to maintains the consitency of
his portal or the xml writer to choose the right types. mobtypes is located in the Tools subfolder and
the usage is explain in the associated README file.

3.2 Installation, Programs vs Local/Programs

The program installation process is described in the README file, located in the Tools subfolder of
the Mobyle directory.

3.3 Debug

There are 4 levels of debug for a program. The debug level is set in Local/Config/Config.py either for
all programs (with DEBUG variable) or for only one program (with PARTICULAR DEBUG). Set the
debug level for your program to a value up to 0. With a debug level up to 1, all steps of commandline
building: value received, value conversion, controls, and code evaluation, are logged in build log file.
Unfortunately this log file receives all logs from all programs and executions simultaneously. Hence, it
can become quickly unreadable, and I recommend to set the debug level up to 1 only for one program
at a time and hide this new program to the other users (if mobyle is accessible from multiple users)
with the RESTRICT ACCESS fields. when you set the debug level to 2, you can test the command
line building but it’s not executed. thus you can debug the xml even if the program is not installed

1This tool will simply automate the validation of the XML, according to its grammar which is based in the
mobyle.rnc/rng files and a set of additional schematron rules. However, it should not be necessary to be familiar
with these files to be able to write a program description.

7

on your platform or if its execution time is too long. Don’t forget to reinstall the xml each time
you modify it (python programInstaller.py -s local -p myNewProgram). Once the debuging phase
completed you’ll just need to remove the restricted access and set the debug level to 0.

8

	Overview
	 Writing
	head
	Entities and XInclude

	Parameters
	Paragraph
	Parameter
	Typing
	Mobyle DataTypes Tour.
	xml data types
	chaining
	extending mobyle types

	the Output
	Parameter display customization

	Installing and debugging
	Validation
	Installation, Programs vs Local/Programs
	Debug

