
How to configure Mobyle

Mobyle 0.97

Contents

1 General Configuration 1
1.1 Link mobyle with a web server . 1

1.1.1 example of Mobyle configuration using a virtual host . 2
1.1.2 example of Mobyle configuration using a web subdirectory 2

1.2 Mail . 3
1.3 Execution system . 3

1.3.1 SGE-specific configuration . 3
1.3.2 PBS/Torque-specific configuration . 3

1.4 Logging . 4
1.5 Sequence and alignment management . 4
1.6 Debug . 4
1.7 Binary path . 5
1.8 Data banks . 5
1.9 User authentication and management . 5
1.10 Portal settings . 6
1.11 Programs management . 7

1.11.1 Deployment . 7
1.11.2 Disabling programs execution . 7
1.11.3 Restriction programs access . 7

1.12 MobyleNet functionality . 8

2 Mail Templates 9

3 Local Policy 9
3.1 emailCheck . 9
3.2 authenticate . 9

4 Black list 10
4.1 users . 10
4.2 host . 10

5 Portal referencing in search engines 10

1 General Configuration

The Mobyle configuration is set in the file $MOBYLEHOME/Local/Config/Config.py. It is written in
Python, so be very careful to validate the syntax of your file.

1.1 Link mobyle with a web server

Three values have to be carefully updated in the configuration to integrate it correctly with your web server.
ROOT URL: the root url and port of the mobyle project. (mandatory)
HTDOCS PREFIX: the extra path to the htdocs mobyle project. (mandatory)

1

CGI PREFIX: the extra path to the cgi mobyle project. (mandatory)

You can potentially use any web server, just as long as it is multithreaded and CGI-enabled. Following
are two configuration examples that use Apache 2, one that hosts Mobyle in a virtual host, the other in a
subdirectory.

1.1.1 example of Mobyle configuration using a virtual host

Apache configuration

<VirtualHost 192.168.0.3:83>
ServerName server.domain.ext:83
ScriptAlias "/cgi-bin" "/var/www/localhost/cgi-bin/mobyle/"
DocumentRoot "/var/www/localhost/htdocs/mobyle/"
DirectoryIndex index.html index.xml
ErrorLog "/var/log/apache2/mobyle_error_log"
CustomLog "/var/log/apache2/mobyle_acces_log" combined

</VirtualHost>

Mobyle installation

python setup.py install --install-htdocs=/var/www/localhost/htdocs/mobyle/ \
--install-cgis=/var/www/localhost/cgi-bin/mobyle/\
--install-core=/any/where

Mobyle configuration

ROOT_URL = ‘‘http://server.domain.ext:83’’
HTDOCS_PREFIX = ‘‘’’
CGI_PREFIX = ‘‘cgi-bin/mobyle’’

1.1.2 example of Mobyle configuration using a web subdirectory

Apache configuration

ServerName server.domain.ext
ScriptAlias "/cgi-bin" "/var/www/localhost/cgi-bin/"
DocumentRoot "/var/www/localhost/htdocs/"
DirectoryIndex index.html index.xml

Mobyle installation

python setup.py install --install-htdocs= /var/www/localhost/htdocs/mobyle/ \
--install-cgis=/var/www/localhost/cgi-bin/mobyle/\
--install-core=/any/where

Mobyle configuration

ROOT_URL = ‘‘http:mobyle.mydomain.ext/mobyle’’
HTDOCS_PREFIX = ‘‘mobyle’’
CGI_PREFIX = ‘‘cgi-bin/mobyle’’

2

1.2 Mail

Mobyle occasionally sends emails to users, to validate their email adresses when creating “authenticated”
accounts, to send job notifications or help request notifications. It is mandatory to configure correctly this mail
to be able to run Mobyle. The values are the following:

MAILHOST: the mail transfert agent used by Mobyle to send an email. (mandatory)
MAXMAILSIZE: if the results size is over MAXMAILSIZE, job results are not sent. Rather, only a notifi-
cation of the end of his job is send to the user (containing a link to download it), in bytes. (default = 2097152
(2Mo))
MAINTAINER: the emails list which will receive alert emails when problems occur in Mobyle. (mandatory
)
HELP: the email adress that receives help requests from users. (mandatory)
SENDER: the email address representing Mobyle which sends long job notifications, results etc. . . (for further
details, see the MailTemplate section)

1.3 Execution system

Mobyle can execute jobs either locally or on the SGE or PBS Distributed Resource Management systems. You
can also extend it to use it with your own system, provided that you write the appropriate execution module
and place it in the Src/Mobyle/Execution package.

BATCH is the value that sets the default execution system used to run jobs. It must be the name of a
Python module in Src/Mobyle/Execution package (except batch.py and Dummy.py). There are by default
3 available modules:

• SYS, if you don’t have any particular execution system (default).

• SGE, if you use Sun Grid Engine to manage the execution of your jobs.

• PBS, if you use torque to manage the execution of your jobs.

For some programs you may want to use a different Execution system than the default one. You can configure
this using the PARTICULAR BATCH value (optional). It is a dictionary, where a key is a program name,
and a value the corresponding execution system.

Example:

BATCH= ‘‘SGE’’
PARTICULAR_BATCH={‘‘golden’’ : SYS}

If your execution system use queues (SGE, PBS) you can define the default queue with DEFAULT Q and
override it for some special programs with PARTICULAR Q.

Example:

DEFAULT_Q = ’local’
PARTICULAR_Q = {’golden’ : ’short’ }

1.3.1 SGE-specific configuration

SGE ROOT is the path to the GridEngine root installation. SGE CELL is the cluster name to be used. Of
course, these attributes are only required if you use SGE.

1.3.2 PBS/Torque-specific configuration

Q PROPERTIES={}
This attribute is used by the PBS class. For further information about PBS configurations see: http://
mobyle.rpbs.univ-paris-diderot.fr/help/MobylePBSConfiguration.html

3

http://mobyle.rpbs.univ-paris-diderot.fr/help/MobylePBSConfiguration.html
http://mobyle.rpbs.univ-paris-diderot.fr/help/MobylePBSConfiguration.html

1.4 Logging

LOGDIR is the directory where are located the different file loggers. Beware, default is /dev/null, hence
nothing will be logged, which makes it hard to trace potential problems.

• access log: to log the jobs launched

• error log : to log the MobyleError

• build log : to log all the step leading to build the command line (when debug >= 2)

If ACCOUNTING is set to True an account log will be created to log some statistics about jobs. This log
file can be used to tune the execution system.

1.5 Sequence and alignment management

Mobyle can use 2 programs helper to manage the sequences and alignments format: readseq (the java version)
and squizz. We strongly recommend squizz as we experienced lot of troubles with readseq.
SEQCONVERTER defines which converter will be used and where to find it.

Example: here we use both converters. In this case squizz will be used first, and if it fails to detect/convert
the format, readseq will be used.

SEQCONVERTER = {’SQUIZZ’: ’/path/to/bin/squizz’ ,
’READSEQ’: ’/path/to/bin/jreadseq’
}

1.6 Debug

DEBUG allows to set the default debug level in Mobyle. It can be overloaded on a per-program basis with
PARTICULAR DEBUG. There are 4 debug levels:

• Level 0 , used in production:

– the command line is built

– the build log is NOT filled

– the job is executed

• Level 1 , to test a program definition XML (e.g. python syntax in code, precond. . .):

– the command line is built

– the build log is NOT filled

– the job is NOT executed

• Level 2 , to debug a program definition XML:

– the command line is built

– the build log is filled

– the job is NOT executed

• Level 3 , to test the program definition XML, the job execution and its results:

– the command line is built

– the build log is filled

– the job is executed

4

The default debug level is 0. Beware, only debug levels 0 and 3 allow the execution of a job.
To test/debug a program or its interface, the feature PARTICULAR DEBUG is used in conjunction with
AUTHORIZED SERVICES which allows to define restricted access by IP address (See section Restriction
programs access). To do this, set the PARTICULAR DEBUG to 2 or 3 (if you want to test the execution
and results) for your program and restrict the access to this program to your own machine. You will then be
the only one who can access the interface in the portal, and the build log will register all steps of the command
line generation which can be useful to debug an interface.

Example: here, all services have a debug level set to 0 except clustalw which is set to 2.

DEBUG= 0
PARTICULAR_DEBUG={ ’clustalw’ : 2 }

1.7 Binary path

BINARY PATH is a list of strings representing the paths where the program binaries can be found. Each
element of the list must be a valid path. The order of the elements is kept to build the final path. These paths
are added before the canonical PATH. By default, it is empty.

Example: here we add ’usr/local/bin’ to $PATH:

BINARY_PATH = ["/usr/local/bin’’]

1.8 Data banks

DATABANKS CONFIG describes the locally available databanks to fetch entries from, using the various
utilities. It is a dictionnary of dictionnaries, such that:

• the key is the name of the bank, and the value is a dictionnary where

• ’dataType’ is the Mobyle dataType of the data which are stored in the bank,

• ’bioTypes’ is the list of Mobyle bioTypes for the data which are stored in the bank,

• ’label’ is the label of the bank, as shown to the user in the portal,

• and ’command’ is a string template that describes how to generate a command line that will retrieve
the bank entry(ies). The db key is the key of the requested bank, and id is the requested value.

Example:

DATABANKS_CONFIG = { ’WGS’ : { ’dataType’ : ’Sequence’,
’bioTypes’ : [’Nucleic’],
’label’ : ’Genbank - Whole Genome Shotgun’,
’command’ : [’golden’, ’%(db)s:%(id)s’] },

’PDB’ : { ’dataType’ : ’3DStructure’,
’bioTypes’ : [’Protein’],
’label’ : ’Protein Data Bank’,
’command’ : [’PDBGet.py’, ’%(id)s’] }

}

1.9 User authentication and management

User actions in the portal, such as job submissions, can be configured to require some informations such as a
valid email, to be able to contact the user if necessary.

Requiring e-mails to enable job submissions OPT EMAIL: set this to True to allow the users to run
a job without specify any email. (default = False)
PARTICULAR OPT EMAIL: you can override the general OPT EMAIL option for a specific program.

Example: the email is mandatory to run any program, except for golden (a very short program).

OPT_EMAIL = False
PARTICULAR_OPT_EMAIL = { ’golden’ : True }

5

General e-mail validation configuration User-provided emails can be validated beyond syntax check by
performing a DNS resolution on the domain part of the user email, to ensure that a valid corresponding mail
server exists, in order to limit fake user email addresses. This is done by setting DNS RESOLVER to True.
In this case the dnspython library must be installed. By default, domain name resolution is not performed.

User accounts management Each user has a space to store his data. This space can be temporary (during
the working session) or persistent. The temporary space is created when a user connects to the portal and is
accessible during the work session. These temporary accounts are refered to in the configuration as anonymous
sessions. Persistent accounts are refered to as authenticated sessions, as they should require a higher level of
validation for user informations (such as emails). Such accounts allow the user to access his workspace across
several browser sessions, by signin in in the portal.

Administrators can enable/disable the use of anonymous and authenticated sessions by setting the ANONY-
MOUS SESSION and AUTHENTICATED SESSION values.

ANONYMOUS SESSION can take 3 values :

• ’no’ : anonymous sessions are not allowed,

• ’yes’ : anonymous sessions are allowed, without any verification,

• ’captcha’ : anonymous sessions are allowed, but with a captcha challenge (default value).

AUTHENTICATED SESSION can also take 3 values :

• ’no’ : the authenticated sessions are not allowed,

• ’yes’ : the authenticated sessions are allowed and activated, without any restriction,

• ’email’ : the authenticated sessions are allowed but an email confirmation is needed to activate it (default
value).

User workspaces are allocated a given amount of disk space. This disk space stores mainly their data
bookmarks, which they can reuse across multiple tools. Note that this disk space does not include the
job files, which are stored separately, and only “linked” from the user account. This size can be set using
SESSIONLIMIT, which has a default value of 50Mib.

Jobs management To limit disk space problems generated by very hungry users, or by execution loops
which output ever-growing files, the FILELIMIT value lets you define what is the maximum size for a file
generated by a job if and only if the job is executed using the OS batch system. If you use a distributed
resource management system such as SGE or Torque/PBS, please refer to its documentation.

Jobs can be configured to have a limited “storage” time, meaning that once they have finished they will be
available on the server for a given number of days before to be removed. To configure this “cleaning” tasks,
please set the RESULT REMAIN value which stores the lifetime of a finished job in days (default value of
10 days). Jobs should be removed using the mobclean tool (see Tools/mobclean and Tools/README), which
can be started periodically from a cron.

Users are notified by email that their job has been finished if this job is considered as “long”. The “long”
job limit is set using TIMEOUT n seconds, and the default value is 60s. For technical reasons, the “floor”
value is 10 seconds, meaning that it cannot be lower than 10 seconds: if you set it lower, Mobyle will set it to
10 seconds.

1.10 Portal settings

The Mobyle portal includes a javascript-based polling mechanism which regularly launches user workspace
updates by getting its contents from the server. The frequency of these requests can be set with RE-
FRESH FREQUENCY, in seconds. Its default value is 240 seconds, meaning the automatic workspace
refresh is launched every 4 minutes. User data (parameter values or job results) are displayed in textarea
elements in the portal (if text-based). However, this preview/editing mechanism can be problematic if the data
file to be displayed is too large. Hence, the portal does not display the contents of a data file if its size is above
a given limit. The size limit can be set with PREVIEW DATA LIMIT, and the default size is 1048576
octets (1 Mib).

6

1.11 Programs management

1.11.1 Deployment

Basically, the xml descriptions of the programs that can be used in Mobyle are located in two directories:
Mobyle/Local/Programs and Mobyle/Programs. To be able to use these programs from Mobyle, you need to
“deploy” them, an operation which will copy them in the HTTP-accessible area and also index them for use
in Mobyle.

While you can tune the program descriptions which are deployed from the Programs directory, all the
ones from Local/Programs are deployed. The following configuration values are used to select the program
descriptions from the Programs directory, :

• LOCAL DEPLOY ORDER: The order in which INCLUDE and EXCLUDE directives are evaluated
(default=[’include’,’exclude’]).

• LOCAL DEPLOY INCLUDE: The list of programs descriptions to install (default=[’*’]).

• LOCAL DEPLOY EXCLUDE: The list of programs descriptions to not install (default=[]).

By default all program descriptions are deployed (include all, exclude nothing). For INCLUDE and EXCLUDE
directives, shell jokers can be used. For instance, ’dna*’ refers to all programs descriptions beginning by ’dna’. . . .

Example: if you want deploy only “blast family” programs, you can configure mobyle like this:

LOCAL_DEPLOY_ORDER = [’exclude’ ,’include’]
LOCAL_DEPLOY_INCLUDE = [’blast*’]
LOCAL_DEPLOY_EXCLUDE = [’*’]

Example: if you want all programs except the blast family programs:

LOCAL_DEPLOY_ORDER = [’include’,’exclude’]
LOCAL_DEPLOY_INCLUDE = [’*’]
LOCAL_DEPLOY_EXCLUDE = [’blast*’]

The mobdeploy tool, located in Tools subfolder, is the script to use to deploy the xml programs descriptions
(for more details see associated README).

1.11.2 Disabling programs execution

It is sometimes necessary to disable the portal or a program for maintenance operations for instance. You
can disable a program by adding its complete url in the DISABLED SERVICES list or disable all pro-
grams by setting DISABLE ALL to True to forbid to run any program. This mechanism prevents all
new job submissions, portal-wide or program-specific, without any need to remove it from the portal. Con-
versely, new submissions can be enabled back by setting DISABLE ALL to False or removing them from
the DISABLED SERVICES list. By default, nothing is disabled (default DISABLE ALL=False , DIS-
ABLED SERVICES=[]). Please note that even though no job submission is accessible, the form itself can still
be displayed.

1.11.3 Restriction programs access

The access to some programs can be restricted based on their IP. By default all the programs available are usable
by all users who can access your web server. But sometimes, due to some license restrictions for example, you
need to filter this access. AUTHORIZED SERVICES is a dictionary with the service names of programs
to restrict as keys and the list of IPs which can access these programs as values. It associates the program
URL to a list of IP adresses or simplified IP masks.

Example: here toppred can be accessed by any machine with IP 125.234.60.18 or any IP with “mask”
125.234.60.*

AUTHORIZED_SERVICES = {
’http://myMobyle.mydomain.fr/data/programs/toppred.xml’ : [’125.234.60.18’, ’125.234.60.*’]

}

7

Example: you have a new version of neighor program and you want to test it so you restrict the access to
your IP 125.234.60.18 and set the debug level of the program to 2 doing this:

PARTICULAR_DEBUG={ ’neighbor’ : 2 }

AUTHORIZED_SERVICES = {
’http://myMobyle.mydomain.fr/data/programs/neighbor.xml’ : [’125.234.60.18’]

}

1.12 MobyleNet functionality

Mobyle includes a set of functionalities which allow the use of programs which are available on remote Mobyle
servers. MobyleNet-ed servers are connected using HTTP, to enable remote job submissions or results retrievals
for instance.

The configuration of the MobyleNet functionality is set in the following values:

• PORTALS: The mobyle Server from which you want to import services. To define a server, you need
to specify this 6 fields:

– name: the nickname you give to a Mobyle server. The programs imported from this server will be
labeled with this name in the programs panel in the portal.

– url: the url of the portal.

– help: the email adress to send help messages (should probably be the email set in the HELP
configuration value of the corresponding server).

– repository: the url where the program descriptions (XML files) are stored.

– programs: the list of programs you want to import from this server.

– jobsBase: the url of the jobs repository.

• EXPORTED SERVICES: The list of local programs for which you want to enable remote call from
other portals.

Beware, such a functionality does not mean you can import programs/services from publicly available
Mobyle portals without asking, as it can significantly impact the remote server load. Please consider asking
the maintainer of the portal you wish to import programs from before doing so.

Example:

PORTALS={
’mobyleA’: {

’url’: ’http://mobyle.domain.ex/cgi-bin/MobylePortal’,
’help’ : ’user@domain.ex’,
’repository’: ’http://mobyle.domain.ex/data/programs/’,
’programs’: [’clustalw-multialign’],
’jobsBase’: ’http://mobyle.domain.ex/data/jobs’
} ,

’univB’: {
’url’: ’http://bio.univB.fr/cgi-bin/’,
’help’ : ’mobyle-help@univB.fr’,
’repository’: ’http://bio.univB.fr/Mobyle/programs’,
’programs’: [’muscle’ , ’sspro’],
’jobsBase’: ’http://bio.univB.fr/Mobyle/Results’
}

}

EXPORTED_SERVICES = [’protpars’ , ’dnapars’, neighbor’]

8

2 Mail Templates

Mobyle uses emails in several circumstances. You can tune the contents of each mail by modifying the corre-
sponding template in Local/mailTemplate.py.

A template is composed of two parts, the header and the body. The header must contain the fields
“From” and “Subject”, and can contain the fields “Cc”, “Bcc”, “Reply-To” and “Organization”. For each
template, you can use some variables which will be expanded at runtime. All available variables are explained
in Local/mail.template.py.

• CONFIRM SESSION : if AUTHENTICATED SESSION is set to ’email’, an email is sent to the
user to confirm his registration.

• LONG JOB NOTIFICATION : when a job is longer than TIMEOUT, we consider this job as a
long job and a notification is sent to the user to notify him that his job keeps running.

• RESULTS FILES : when a job is finished, all results are sent to the user as a zip archive (if an email
was specified).

• RESULTS TOOBIG : if the results size is bigger than MAXMAILSIZE, a notification of the end of
the job and the URL of the results is send to the user.

• RESULTS NOTIFICATION : if a trouble occurs during the results zipping, a notification of the end
of the job and the URL of the results is sent to the user.

• HELP REQUEST : whereas the previous emails are sent by “Mobyle” SENDER to the user, this
email is sent by the user to HELP. The user triggers this action by clicking on the “ask for help” button
in the results page.

• HELP REQUEST RECEIPT: this is a receipt sent to the user who asks for help, containing a copy
of his request.

3 Local Policy

The Local/Policy.py module is used to overload internal Mobyle functions to adapt them to your adminis-
tration needs.

3.1 emailCheck

This function checks if the email is valid, according to the local rules. This function takes one argument, the
email address, and must return one of the following values:

• Mobyle.Net.EmailAddress.VALID : if the email is valid

• Mobyle.Net.EmailAddress.INVALID : if the email is rejected

• Mobyle.Net.EmailAddress.CONTINUE : to continue further the email validation process

This function is called after the syntax checking, black-list filter and, if enabled by your configuration,
before the “dns” checking.

3.2 authenticate

This function overloads the Mobyle authentication session method. You can provide here any custom authenti-
cation mechanism. This function takes 2 arguments, login and password, and must return one of the following
values:

• Mobyle.AuthenticatedSession.AuthenticatedSession.CONTINUE: the method did not authenticate this
login/passwd. The fall back method must be applied.

• Mobyle.AuthenticatedSession.AuthenticatedSession.VALID: the login/password has been authenticated
and is valid.

• Mobyle.AuthenticatedSession.AuthenticatedSession.REJECT: the login/password is invalid.

9

4 Black list

The file Local/black list.py allows to forbid job submission to “non-desired” users. In this file 2 structures are
defined to store emails or IPs for which you want forbid job submissions.

4.1 users

The first structure, users, is a list of emails which are not allowed to run a job on your Mobyle server.
Example:

users = [’foo@bar.com’, ’spam@eggs.fr’]

4.2 host

The second structure, host, is a list of IPs from which users are not allowed to run a job on your Mobyle server.
You can use * as a joker to black list a whole subnet. Example:

host = [’192.168.3.1’ , ’192.168.2.*’]

5 Portal referencing in search engines

If you manage a publicly accessible Mobyle portal, you may be interested in having it referenced by various
search engines. To facilitate this task, the Mobyle portal includes a sitemap-generating CGI. Briefly, you can
“declare” your sitemap to different search engines (refer to their respective webmaster help pages). This sitemap
will facilitate the crawling of your Mobyle portal, by declaring a different page for each available program. For
more detailed information about sitemaps, refer to http://www.sitemaps.org/. In Mobyle, this sitemap,
sitemap.py is located in the same directory as the other CGIs.

10

http://www.sitemaps.org/

	General Configuration
	Link mobyle with a web server
	example of Mobyle configuration using a virtual host
	example of Mobyle configuration using a web subdirectory

	Mail
	Execution system
	SGE-specific configuration
	PBS/Torque-specific configuration

	Logging
	Sequence and alignment management
	Debug
	Binary path
	Data banks
	User authentication and management
	Portal settings
	Programs management
	Deployment
	Disabling programs execution
	Restriction programs access

	MobyleNet functionality

	Mail Templates
	Local Policy
	emailCheck
	authenticate

	Black list
	users
	host

	Portal referencing in search engines

