
How to configure Mobyle

Mobyle 0.97

Contents

1 General Configuration 1
1.1 Link mobyle with a web server . 1
1.2 Mail . 2
1.3 Execution system . 2
1.4 Logging . 2
1.5 Data converter management . 3
1.6 Debug . 3
1.7 Binary path . 4
1.8 Data banks . 4
1.9 Statistics . 4
1.10 Authentication . 4
1.11 Misc . 5
1.12 Disabling services . 6
1.13 Restriction services access . 6
1.14 Services management . 6
1.15 Grid aspects . 7

2 MailTemplate 7

3 Policy.py 8
3.1 emailCheck . 8
3.2 authenticate . 8

4 Black list 8
4.1 users . 8
4.2 host . 9

1 General Configuration

The Mobyle configuration file is write in python, so it must follow the python syntax.

1.1 Link mobyle with a web server

ROOT URL: the root url and the port of the mobyle project. (mandatory)
HTDOCS PREFIX : the extra path to the htdocs mobyle project. (mandatory)
CGI PREFIX : the extra path to the cgi mobyle project. (mandatory)

example of Mobyle configuration using a virtual host: apache configuration:

<VirtualHost 192.168.0.3:83>
ServerName server.domain.ext:83
ScriptAlias "/cgi-bin" "/var/www/localhost/cgi-bin/mobyle/"
DocumentRoot "/var/www/localhost/htdocs/mobyle/"
DirectoryIndex index.html index.xml

1

ErrorLog "/var/log/apache2/mobyle_error_log"
TransferLog "/var/log/apache2mobyle_acces_log"

</VirtualHost>

Mobyle installation

python setup.py install --install-htdocs= /var/www/localhost/htdocs/mobyle/ \
--install-cgis=/var/www/localhost/cgi-bin/mobyle/\
--install-core=/any/where

Mobyle configuration

ROOT_URL = ‘‘http:mobyle.mydomain.ext:83’’
HTDOCS_PREFIX = ‘‘’’
CGI_PREFIX = ‘‘cgi-bin/mobyle’’

example of Mobyle configuration using a web subdirectory:
apache configuration:

ServerName server.domain.ext
ScriptAlias "/cgi-bin" "/var/www/localhost/cgi-bin/"
DocumentRoot "/var/www/localhost/htdocs/"
DirectoryIndex index.html index.xml

Installation

python setup.py install --install-htdocs= /var/www/localhost/htdocs/mobyle/ \
--install-cgis=/var/www/localhost/cgi-bin/mobyle/\
--install-core=/any/where

Mobyle configuration

ROOT_URL = ‘‘http:mobyle.mydomain.ext/mobyle’’
HTDOCS_PREFIX = ‘‘mobyle’’
CGI_PREFIX = ‘‘cgi-bin/mobyle’’

1.2 Mail

MAINTAINER: the emails list which will receive alert emails when problems occur in Mobyle. (mandatory)
HELP: the email adress where the users can have help about their jobs. (mandatory)
MAILHOST: the mail transfert agent used by Mobyle to send an email. (mandatory)
SENDER: the email address representing Mobyle which send, long job notification, results etc. . . (for further
details, see MailTemplate section)
MAXMAILSIZE: if the results size is over MAXMAILSIZE only a notification of the end of his job is send to
the user, in bytes. (default = 2097152 (2Mo))

1.3 Execution system

the Execution System has been rewrite to be higly flexible so it’s configuration has completly changed. See
execution system documentation to learn how to configure it.

1.4 Logging

LOGDIR: the directory where are located the different file loggers. (default = /dev/null)

• access log: to log the jobs launched

• error log : to log the MobyleError

2

• build log : to log all the step leading to build the command line (when debug >= 2)

ACCOUNTING: if its set to True an account log will be created to log some statistics about jobs. This log file
can be used to tune the execution system.

1.5 Data converter management

You can define through DATACONVERTER which converter(s) you want to use to manage the datatype(s)
format.
For each Datatype you want to manage the format, you can provide an ordered list of converter(s) as following:

DATACONVERTER = {
’Datatype1’: [converter1_class(’/path/to/bin/converter1’),
converter2_class(’/path/to/bin/converter2’)] ,

’Datatype2’: [converter3_class(’/path/to/bin/converter3’)]
}

Basically, two converter classes are provided in Mobyle: squizz alignment and squizz sequence to manage
respectively Alignment and Sequence formats with squizz program (we strongly recommend squizz).
Converter classes are located in MOBYLEHOME/Src/Mobyle/Converter.

Example to use the provided converters:

DATACONVERTER = {
’Sequence’: [squizz_sequence(’/path/to/bin/squizz’)] ,

’Alignment’: [squizz_alignment(’/path/to/bin/squizz’)]
}

1.6 Debug

DEBUG allow to set the default debug level in Mobyle which can be overload with PARTICULAR DEBUG.
This feature is used in conjonction of RESTRICTED ACCESS to test/debug a program or it’s interface. To
do this turn the PARTICULAR DEBUG to 2 or 3 (if you want to test the execution and results) for your
program and restrict the access at his program to your own machin. Only you can access to the interface in
the portal and the build log register all steps of the command line building which could be useful to debug an
interface. (default debug = 0)

example:
DEBUG= 0
PARTICULAR DEBUG={ ’clustalw’ : 2 }
In this example, all services have a debug level set to 0 except clustalw which is set to 2.

• Level 0 , used in production:

– the command line is build

– the build log is NOT fill

– the job is executed

• Level 1 , to test a xml (python syntax in code , precond ...):

– the command line is build

– the build log is NOT fill

– the job is NOT executed

• Level 2 ,to know what’s wrong in the xml I wrote:

– the command line is build

3

– the build log is fill

– the job is NOT executed

• Level 3, to test the xml and the job execution and the results retrieving:

– the command line is build

– the build log is fill

– the job is executed

1.7 Binary path

BINARY PATH is a list of strings representing the paths where the binaries could be found. Each element of
the list must be a valid path. The order of the element is kept to build the final path. These pathes are add
before the canonical PATH. (default BINARY PATH = []).
example to add ’usr/local/bin’ to $PATH :
BINARY PATH = [”/usr/local/bin”]

1.8 Data banks

DATABANKS CONFIG describes the locally available databanks to fetch entries from, using the various
utilities.

DATABANKS_CONFIG = { name of the bank :{ ’dataType’ : determine which kind of data manage
this bank, it must correspond to a
Mobyle dataType.

’bioTypes’ : determine which kind of biological
entity manage this bank, it must
correspond to a Mobyle bioType.

’label’ : the label show to the user.
’command’ : how to retrieve an entry.

}
}

example:

DATABANKS_CONFIG = { ’WGS’ : { ’dataType’ : ’Sequence’,
’bioTypes’ : [’Nucleic’],
’label’ : ’Genbank - Whole Genome Shotgun’,
’command’ : [’golden’, ’%(db)s:%(id)s’] },

’PDB’ : { ’dataType’ : ’3DStructure’,
’bioTypes’ : [’Protein’],
’label’ : ’Protein Data Bank’,
’command’ : [’PDBGet.py’, ’%(id)s’] }

}

1.9 Statistics

USEGA : set this to True to activate Google Analytics support. Google Analytics requires a code unique for
the web site. You must be the owner of the web site or an administrator must validate the site for you. By
default, Google Analytics is disabled. Statistics will track visits and jobs run by visitors.
GACODE : code for this web site, required is USEGA is set to True.

1.10 Authentication

OPENID : set this to True to activate OpenId authentication. For OpenId, no user registration is required,
user can connect directly to the portal, it will automatically create an AUTHENTICATED SESSION. (default
= False)

4

OPT EMAIL : set this to True to allow the users to run a job without specify any email. (default = False)
PARTICULAR OPT EMAIL : you can override the general OPT EMAIL option for a specific program.
example :
OPENID = True
OPT EMAIL = False
PARTICULAR OPT EMAIL = { ’golden’ : True }
The email is mandatory to run any programs except for golden (a very short program).

Welcome page configuration WELCOME CONFIG is a dictionnary with 2 entries:

• ’url’ : point toward the document to include in the portal welcome page

• ’format’: with 2 avalaible values:

– ’html’ if the url point out an html page.
– ’atom’ if the url point out an file in atom format.

news ex illustrating example feed is in Example/Local directory.

You can perform a domain name resolution of the user email and search if this domain has a mail exchanger
field (to avoid fake user email address) by setting DNS RESOLVER = True. In this case dnspython must be
installed. (default = False)

Each user have a space to store his data. This space can be temporary (during the working session) or more
persistant. The temporary space is created when a user connect to the portal and is accessible during the work
session this we call an ANONYMOUS SESSION. Whereas the AUTHENTICATED SESSION is created after
the user register in the portal. In this case the user can retrieve his data each time he signin into the portal.
The both user spaces can cohabit in same time.

anonymous session can take 3 values :

• ’no’ : the anonymous sessions are not allowed.

• ’yes’ : the anonymous sessions are allowed, without any verification.

• ’captcha’ : the anonymous sessions are allowed, but with a captcha challenge (default)

authenticated session can also take 3 values :

• ’no’ : the authenticated session are not allowed.

• ’yes’ : the authenticated session are allowed and activated without any restriction.

• ’email’ : the authenticated session are allowed but an email confirmation is needed to activate it (default
).

1.11 Misc

• TIMEOUT:if a job is longer than TIMEOUT we consider this job as “long” job. Then the user is notify
by email the end of this jobs. Otherwise the results are only show directly in the portal.(in sec mandatory
)

• REFRESH FREQUENCY: TODO (default = 240 sec)

• FILELIMIT : If a job generate a file exceeding FILELIMIT, the process is killed (default = 2147483648
, 2 Gib)

• SESSIONLIMIT: the user space size limit (in byte) (default = 52428800 , 50 Mib)

• PREVIEW DATA LIMIT: the size over which the results will not be displayed directly in the portal (
default = 1048576 , 1 Mib)

• RESULT REMAIN: the time, in days, the jobs are kept on the server. The jobs are cleaned by mobclean
tool (see Tools/mobclean and Tools/README) which can be run in a cron. (default = 10 days).

5

1.12 Disabling services

Some times you need to disable the portal or a service (program , workflow) for maintaining operation etc. . . if
DISABLE ALL is True no new job could be submit, but the running job keep running.

To disable specifically one service (program or workflow) from any portal, you can append it in DIS-
ABLED SERVICES. Joker can be used, so it’s easy to disable all services from a given portal. This portal is
call ’local’.
To re-enable services just toggle DISABLE ALL to False or remove it from the DISABLED SERVICES list
example:

DISABLED_SERVICES = [’portal1.service1’ , # disable the service1 from the imported portal1
(as defined in PORTALS)

’portal2.*’ , # disable all services from the imported portal2
’local.clustalw*’ # disable all services begining by

clustalw (clutalw-multialign, clustalw-sequence ,
clustalw-profile) from this server.
]

By default all services are enabled

1.13 Restriction services access

By default all the programs available are usable by all users who can access your web server. But sometimes,
due to some license restrictions etc. . . , you need to restrict the accessibility of some programs to some users.
To do that use the AUTHORIZED SERVICES. The filtering is based on the ip of the requester. AUTHO-
RIZED SERVICES is a dictionary with the service names of programs to restrict as keys and the list of ip
which can access these programs as values.

AUTHORIZED_SERVICES = { serviceURL :[ip or ip mask , ..] \}
the ip addresses which can use the service

AUTHORIZED_SERVICES = {
’http://myMobyle.mydomain.fr/data/programs/toppred.xml’ : [

’125.234.60.18’ , # only the machine with this ip could access to toppred
’125.234.60.*’ , # all the machines in subnet could access to toppred

]
}

1.14 Services management

These configuration variables are used to deploy the xml programs descriptions on the Mobyle web part from
the Mobyle/Local/Programs and Mobyle/Programs. All the xml from Local/Programs are deployed. The xml
from Programs are filtered following the rules below

• LOCAL DEPLOY ORDER : The order in which INCLUDE and EXCLUDE directive are evaluated.(
default = [’include’ , ’exclude’])

• LOCAL DEPLOY INCLUDE : The list of programs descriptions to install. (default = [’*’])

• LOCAL DEPLOY EXCLUDE : The list of programs descriptions to not install. (default = [])

For INCLUDE and EXCLUDE directives shell jokers could be used. By example, ’dna*’ refers to all pro-
grams descriptions beginning by ’dna’. . . . By default all xml are deployed (include all , exclude nothing
). for example, if you want deploy only “blast family” programs, you can configure mobyle like this: LO-
CAL DEPLOY ORDER = [’exclude’ , ’include’]
LOCAL DEPLOY INCLUDE = [’blast*’]
LOCAL DEPLOY EXCLUDE = [’*’]
but if you want all programs except the blast family programs: LOCAL DEPLOY ORDER = [’include’ ,
’exclude’]

6

LOCAL DEPLOY INCLUDE = [’*’]
LOCAL DEPLOY EXCLUDE = [’blast*’]
Use the mobdeploy script which is located in Tools subfolder to deploy programs descriptions (for more details
see associated README).

1.15 Grid aspects

TODO
PORTALS: The mobyle Srevr from which you want to import services. for a server you need to specify 6

fields: name, url, help, repository, programs, jobsBase.

• name: is the nickname you give to a Mobyle server. The programs imported from this server will be
labeled with this name in the programs panel in the portal.

• url: the url of the portal.

• help: the email adress to send help messages.

• repository: the url where are store the xml interfaces.

• programs: the list of programs you want to import from this server.

• jobsBase: the url of the jobs repository.

EXPORTED SERVICES: The list of local programs you want to export toward the other Mobyle server.

example:

PORTALS={
’mobyleA’: {

’url’: ’http://mobyle.domain.ex/cgi-bin/MobylePortal’,
’help’ : ’user@domain.ex’,
’repository’: ’http://mobyle.domain.ex/data/programs/’,
’programs’: [’clustalw-multialign’],
’jobsBase’: ’mobyle.domain.ex/data/jobs’
} ,

’univB’: {
’url’: ’http://bio.univB.fr/cgi-bin/’,
’help’ : ’mobyle-help@univB.fr’,
’repository’: ’http://bio.univB.fr/Mobyle/programs’,
’programs’: [’muscle’ , ’sspro’],
’jobsBase’: ’http://bio.univB.fr/Mobyle/Results’
}

}

EXPORTED_SERVICES = [’protpars’ , ’dnapars’, neighbor’]

2 MailTemplate

Mobyle use emails in several circumstances. You can tune the contents of each mail by modifying the appropriate
template in Local/mailTemplate.py. A template is composed of two parts, the header and the body. the
header nust contains the fileds “From” and “Subject” and can contains the fields “Cc”, “Bcc”, “Reply-To” and
“Organization”. For each template you can use some variables which will be expanded at runtime. all available
variables are explain in Local/mail.template.py.

• CONFIRM SESSION : if AUTHENTICATED SESSION = ’email’ an email is send to the user to confirm
his registration.

7

• LONG JOB NOTIFICATION : when a job is longer than TIMEOUT we consider this job as a long job
and a notification is send to the user to inform the user his job keep running.

• RESULTS FILES : when a job is finished all results are send to the user as a zip archive (if email was
specified).

• RESULTS TOOBIG : if the results size is bigger than MAXMAILSIZE a notification of the end of the
job and the url of the results is send to the user.

• RESULTS NOTIFICATION : if a trouble occur during the results zipping, a notification of the end of
the job and the url of the results is send to the user.

• HELP REQUEST : whereas the previous emails are sent by “mobyle” SENDER to the user, this email
is sent by the user to HELP. The user trigger this action by click on the “ask for help” button in the
results page.

• HELP REQUEST RECEIPT: TODO

a CONFIRM SESSION email is send to the user to confirm his registration, if AUTHENTICATED SESSION
= ’email’

3 Policy.py

Policy.py contain functions which are called in Mobyle but you can used them to plug your code in them to
adapt mobyle to your local policy.

3.1 emailCheck

check if the email is according to the local rules. This function must return either:

• Mobyle.Net.EmailAddress.VALID : if the email is valid

• Mobyle.Net.EmailAddress.INVALID : if the email is rejected

• Mobyle.Net.EmailAddress.CONTINUE : to continue futher the email validation process

This function is called after the “syntax”, “black list” and eventually (it depend of your configuration) before
the “dns” checking.

3.2 authenticate

This function overload the Mobyle authentication session method. You can put here an authentication based
on http, database/openID This function take 2 arguments (login, password) and must return either :

• Mobyle.AuthenticatedSession.AuthenticatedSession.CONTINUE: the method does not autentified this
login/passwd. The fall back method must be applied.

• Mobyle.AuthenticatedSession.AuthenticatedSession.VALID: the login/password has been authenticated.

• Mobyle.AuthenticatedSession.AuthenticatedSession.REJECT: the login/password is not allow to con-
tinue.

4 Black list

This file define 2 structures to store the emails or the ip you want to forbid the access to your server.

4.1 users

The first structure “users” is a list of emails which are unable to run a job on your Mobyle.
users = [’foo@bar.com’ , . . .]

8

4.2 host

The second structure “host” is a list of ip which are unable to run a job on your Mobyle. You can use * as a
joker to black list a whole subnet.
host = [’192.168.3.1’ , ’192.168.2.*’]

9

	 General Configuration
	Link mobyle with a web server
	Mail
	Execution system
	Logging
	Data converter management
	Debug
	Binary path
	Data banks
	Statistics
	Authentication
	Misc
	Disabling services
	Restriction services access
	Services management
	Grid aspects

	 MailTemplate
	 Policy.py
	emailCheck
	authenticate

	 Black list
	users
	host

